
1.
2.

3.
4.

Working with migration scripts
What are migration scripts?

When you deploy changes committed to version control, the SQL Compare engine generates a
deployment script to update the target database. You can use a migration script to add custom
SQL to a specific point in this deployment script.

Migration scripts are necessary to avoid data loss when making certain schema changes. To
achieve this, the migration script intervenes to make data changes occur at the right point of the
deployment.

In most cases, you only need to write SQL for the data changes in the migration script. Schema
changes are committed separately and deployed as normal.

To learn more, see the on this page.examples

Creating a migration script

To create a new migration script:

From the , select the database you want to add a migration script to.Object Explorer
From the toolbar, select .SQL Source Control
The SQL Source Control window opens.
Go to the tab.Migrations
Select the type of migration script, depending on your development process and the
changes you're making:

Start from a blank script

This creates a blank migration script. Select this option if you've already prepared your
schema for the migration and committed those changes.

Example: splitting a column
1. Schema

change
Create

two new
columns

 Commit
2. Migration

script
Split and copy

data to new
columns

 Commit
3. Schema

change
Drop the
original
column

 Commit

Use the migration script to make any required data changes, then save and commit
the script. If you need to make schema changes, commit them separately.

Schema changes and migration scripts will be deployed in the order they're
committed.

Include uncommitted schema changes

Select this option if you've already made all required schema changes for the
migration, and haven't yet committed them.

SQL Source Control generates a migration script which includes DDL changes for the
selected objects. Add data changes to the script, then save and commit.

What are migration scripts?
Creating a migration script
Editing migration scripts
Deploying with migration
scripts
Examples

4.

5.
6.
7.
8.

1.
2.

3.
4.

5.
6.

7.
8.

Example: splitting a column
1. Schema change

Create two new
columns

-
2. Schema change
Drop original column

-
3. Migration script
Add data changes

 Commit

The migration script replaces the section of the deployment script responsible for the
selected schema changes.

Changes to selected objects . Adding or removingmust occur in the migration script
DDL changes from the generated script will affect the deployment and might cause
data loss.

In the field, enter a name for the script.Name
In the editor window, write SQL to make the required changes.
Click .Save & Close
Commit the changes to version control.

When you deploy this revision from version control, or use in SQL Source Control onGet latest
another machine, the migration script will run as part of the deployment. For more information, see

.How migration scripts work

Editing migration scripts

You can edit or delete existing migration scripts from the tab in SQL Source Control:Migrations

From the , select a database with migration scripts.Object Explorer
From the toolbar, select .SQL Source Control
The SQL Source Control window opens.
Go to the tab.Migrations
Expand Existing migration scripts.
Migration scripts on the remote repository are listed.
In the column, click next to a migration script.Actions View / Edit
Edit the script to make the required changes.

Guidelines for editing migration scripts

Don't create new object dependencies.This is likely to cause errors during
deployment.
Don't add/remove DDL changes. This might create an invalid state in version
control.
If you edit the syntax of DDL changes, the resulting schema must stay the
same.

Click Save & Close.
Go to the Commit changes tab and commit the updated migration script.

Once committed, the updated migration script is used in all future deployments.

Deploying with migration scripts

We recommend using SQL Compare to deploy changes to production, as you have the opportunity
to review the deployment script before it's deployed. It is possible to use the functionGet latest
in SQL Source Control to deploy these changes, however we don't recommend linking your
production database directly to source control.

Always commit a new migration script immediately after saving it. Making
changes to your database schema between saving and committing migration
scripts can cause errors during deployment.

https://documentation.red-gate.com/display/SOC5/How+migration+scripts+work

Dependencies

When you create a migration script that includes uncommitted schema changes, SQL Source
Control automatically includes any dependencies. Deselecting any of these dependencies during
the deployment stage will cause the deployment to fail.

Examples

Starting with a blank script
Splitting a column

From a schema point of view, when you split a column you actually create two new columns
and drop the original one. If you deploy this change, any data in the dropped column will be
lost.

To avoid this, you can write a migration script to copy the data to the new columns dropbefore
ping the original column. For a walkthrough of this process, see Splitting a column without data

.loss

Example: splitting a column
1. Schema

change
Create two new

columns.

 Commit
2. Migration

script
Split and copy

data to new
columns.

 Commit
3. Schema

change
Drop the

original column.

 Commit

Merging columns

From a schema point of view, when you merge a column, you create a new column and drop
the original columns. If you deploy this change, any data in the dropped columns will be lost.

To avoid this, you can write a migration script to copy the data from the original columns to the
new column dropping the original columns.before

Example: merging columns
1. Schema

change
Create the new

column.

 Commit
2. Migration

script
Copy data to

the new
column.

 Commit
3. Schema

change
Drop the
original

columns.

 Commit

https://documentation.red-gate.com/display/SOC5/Splitting+a+column+without+data+loss
https://documentation.red-gate.com/display/SOC5/Splitting+a+column+without+data+loss

Splitting or merging tables

You can follow the same steps for splitting or merging a tables as you would for splitting or
merging columns. To avoid data loss, break the change into multiple commits, and write a
migration script to copy the data:

Splitting a table

Commit 1 Commit 2 Commit 3

Create the new table. Migration script to copy the
data to the new table.

Drop the columns in the
original table.

Merging tables

Commit 1 Commit 2 Commit 3

Create the new table. Migration script to copy data
from the old tables to the
new table.

Drop the original tables.

Adding a NOT NULL constraint to a column

If you add a constraint to a column in a table that contains entries, without aNOT NULL NULL
default value, the deployment will fail.

Rather than adding a default value, you can write a migration script to update all the existing N
 entries with a value adding the constraint to the column:ULL NOT NULL before NOT NULL

Example: adding a NOT NULL constraint to a column
1. Migration script
Update entrieNULL
s with vNOT NULL

alues.

 Commit
2. Schema change
Add the NOT NULL

constraint to the
column.

 Commit

Changing the data type or size of a column

When you change a column's data type, data might be lost. For example, if the data type you
change it to doesn't accommodate some of the rows, data will be truncated during
deployment.

To avoid this, you can create a migration script to appropriately modify rows that would
otherwise be truncated.

Replacing uncommitted schema changes
Renaming a table

When you rename a table in Management Studio, SQL Source Control interprets this as
dropping and recreating the table. If the table contains data, the data will be lost.

To avoid this, you can rename the table using the Object Explorer, then select that
uncommitted change on the migrations tab. Generate a migration script for this change and
replace the and statements in the generated script with the storedDROP CREATE sp_rename
procedure.

	Working with migration scripts

